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Abstract

Stereo Particle Image Velocimetry (SPIV) measurements were
undertaken to quantify the flow characteristics created by the
blockage of a turbulent open channel by different sets of emer-
gent obstacles, all with the same porosity. Four sets of obsta-
cles were tested including an in-line regular sized obstacle, and
three arrangements of multi-scale (pre-fractal) obstacles; one
arranged as a Sierpinski carpet, and the other two ordered by
obstacle size (i.e. large to small and vice versa). It is found that
the pre-fractals create a protracted peak of turbulence intensity,
when compared with a regular obstacle. Likewise, by rearrang-
ing the Sierpinski carpet it is possible to change the distribu-
tion of turbulence intensity. Using a Proper Orthogonal Decom-
position further investigations are undertaken to determine the
mechanisms underpinning the physics of these characteristics.

Introduction

The recent computational and experimental works of Hurst &
Vassilicos (2007), Nicolle & Eames (2011), Laizet & Vassili-
cos (2011), Gomes-Fernandes et al. (2012), Laizet & Vassilicos
(2015) have found pre-fractal grids to have a profound effect
on the generation and control of turbulent wakes. Collectively
these studies have shown the flow produced in the wake of a
pre-fractal grid to be significantly different to that of a grid with
a single length scale, of the same porosity. The multiple length
scales associated to the mutliscale grids have been found to or-
ganise turbulent flows and create protracted regions of high tur-
bulence intensity, making them ideal candidates for mixing ap-
plications.

In the present study an array of multiscale square cylinders are
used to create a set of pre-fractal obstacles, and obstruct a tur-
bulent flow. An investigation into the turbulent properties of the
wake produced by these obstacles is undertaken using Stereo
Particle Image Velocimetry (SPIV) measurments. Four experi-
mental cases are chosen (see Fig. 1): The first an obstacle con-
taining only a single length scale (Case I); the second an ob-
stacle containing three length scales arranged in a ‘Sierpinski
Carpet’ (Sierpinski 1916) (Case II); and the third and fourth
two alternate arrangements of the ‘Sierpinski Carpet’ (Case III
& IV). Each iteration within the pre-fractals is related by a scale
factor of 3. All the obstacles extend the whole depth of the flow.
The dimensions of the single square cylinder used in Case I is
the same as the second iteration of the pre-fractal cases.

In an engineering context multi-scale obstacles can be found
as vegetation blocking rivers. These in particular obstacles are
chosen as they all have the same porosity; the three pre-fractal
obstacles have the same ‘fractal dimension’ (Mandelbrot 1967);
the two rearrangements have the same ‘Lacunarity’ (Mandel-
brot 1990); and, all of the obstacles have the a different ‘Succo-
larity’ (de Melo & Conci 2013).

The present study is structured as follows: First, the mean
streamwise velocities are presented; second the turbulent inten-
sity created in the evolution of the wake is investigated; and
finally, using a Proper Orthogonal Decomposition, the turbu-
lent flow structures and their related energy contributions and

dynamics are examined.
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Figure 1: A three-dimensional representation of the different
flow cases

Experimental Set-up

In a 0.5 m (width) × 18 m (length) open channel water flume
at the University of Sheffield, UK, at a Reynolds number of
Re=19,000 (where Re=U0D/µ, U0 is the inlet flow, D, is the
hydraulic radius and µ is the kinematic viscosity) Stereo Parti-
cle Image Velocimetry measurements (SPIV) were undertaken
along the centre line of the flow, parallel to the depth (see
Fig. 2). The height of water was 0.3 m, and inlet flow was
set to Q=0.10 l/s. The water flume has full optical access; the
laser was mounted below with the cameras mounted perpendic-
ular to the flows depth. Images were acquired using three Im-
ager MX 4M cameras arranged around a glass prism to reduce
optical distortion. The flow was seeded with 100 µm spheri-
cal ‘Poylamid 12’ particles and illuminated by a double pulsed
Nd:YAG laser. The SPIV calculations were undertaken using
the LaVision FlowMaster software. A multi-pass dynamic in-
terrogation window was used ranging from 64px to 32px, with
an overlap of 50%. For each experimental case 6 experimental
planes were taken, each with an overlap of ≈ 10%. At each
location 6,000 vector fields were captured at 25Hz. The cen-
tre of the images was located at the centre depth of the flow,
as to not be affected by boundary effects. The size of each ac-
quired image and result vector field was 130 mm × 100 mm.
From the SPIV calculations three velocity components are de-
termined: the streamwise velocity u, the vertical velocity v and
the spanwise velocity, w. As the second iteration of the pre-
fractals occurs in all of the experimental cases, a co-ordinate
system is created and normalised by this dimension; where X∗

is the streamwise direction, Y∗ is the vertical dimension and Z∗

is the spanwise dimension. The data was post processed using
the PODDEM algorithm (Higham et al. in press)

Proper Orthogonal Decomposition

POD is a statistical method commonly used in fluid mechan-
ics for the extraction and analysis of energy meaningful tur-
bulent structures (Aubry 1991, Berkooz et al. 1993). POD
was independently derived by a number of individuals, con-
sequently acquiring a variety of names in different fields in-
cluding Karhunen-Loève Decomposition, Singular Value De-
composition (SVD) and Principal Components Analysis (PCA)
(Kosambi 1943, Loève 1945, Karhunen 1946, Pougachev 1953,
Obukbov 1954). POD extracts energy relevant structures
(modes) from set of a stochastic, statistically steady-state turbu-
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Figure 2: Experimental Set-up

lent fields, within a finite time domain, ordering them by their
contribution to the total variance of the physical property being
analysed, e.g. velocity (Brevis & Garcı́a-Villalba 2011). A set
of t = 1,2, . . . ,T temporally ordered vector fields,V(x,y; t), is
considered, each of which is of size X ×Y . The method requires
the construction of a N ×T matrix W from T columns w(t) of
length N = XY , each column corresponding to a column-vector
version of a transformed snapshot V(x,y; t). A POD can be ob-
tained as the solution of a SVD:

W ≡ PSCT (1)

where S is a matrix of size Ω×Ω, (Ω are the number of modes
of the decomposition, and (·)T represents a transpose matrix
operation). The λ = diag(S)2/(N −1) is the vector containing
the contribution to the total variance of each Ω. The elements in
λ are ordered in descending rank order, i.e. (λ1 ≥ λ2 ≥ . . .λΩ ≥
0). In practical terms the matrix P of size N ×Ω contains the
spatial structure of each of the modes and the matrix C of size
Ω×Ω contains the coefficients representing the time evolution
of the modes.

Results

Figure 3 presents the mean streamwise velocity, in Case I, as ex-
pected, there is a negative region of streamwise velocity in the
near wake of the obstacle at X∗ =1–2. Out of all of the cases,
this case regains a steady streamwise velocity in the shortest
streamwise distance. In all of the pre-fractal cases a similar
negative region of velocity is observed. Interestingly this re-
gion occurs at the same location X∗ =2–4, although the magni-
tude and distribution of this region differs corresponding to the
arrangement. Out of the three pre-fractal cases, it is found the
rate of change in the direction of velocity from back from neg-
ative to positive, in Case II is smallest. Out of all of the cases
it is found that Case IV produces the greatest change in veloc-
ity magnitude. Unlike Case II, Cases III & IV regain a steady
streamwise velocity at a much shorter streamwise distance.

In Fig. 4 the turbulence intensity u′/U0, i.e. the root-mean-
square of the velocity fluctuations at 40% of the flows depth
is presented. Fig. 4 (a) shows the turbulence intensity plotted
against X∗. The figure shows the peak turbulent intensity for
Case I is located after the intense change in direction of the
streamwise velocity (X∗=2). Likewise, in all of the pre-fractal
cases the peak turbulence intensity occurs at the same location,
relating to the similar event (X∗=4). In Fig. 4 (b) the streamwise
distance is normalised by the location of the peak turbulence in-
tensity xpeak. This figure highlights that in the pre-fractal cases
the growth and decay of the turbulence intensity is dependent on
the arrangement. In Case II the growth and decay of the turbu-
lence intensity is smooth with no additional peaks, resembling
and elongated stretched Case I. In Case III, where the largest
iteration is located at the back of the fractal a deficit is seen in
the growth region and as a consequence the turbulence intensity
decays at a slower rate. In Case IV, where the largest iteration is

Figure 3: Mean streamwise velocities for each case normalised
by inlet velocity U0

located at the front of the obstacle, a secondary peak is observed
in the production region, the presence of which may explain en-
hanced rate of decay.
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Figure 4: Turbulence intensity, u′/U0, plotted against the
streamwise distance in: (a) The streamwise distance is nor-
malised by the second iteration; (b) the streamwise distance
is normalised by the location of the peak turbulence intensity
(xpeak).

Proper Orthogonal Decomposition

A POD is computed from all 6,000 velocity fields using all three
components. In the present study the streamwise modes are
presented. For a POD synchronous vector fields are required.
As a result multiple computations are undertaken for each case.

From an general overview of all the POD spatial modes it ap-
pears that in the top two modes, between each case the large
scale spatial structures are similar. However, between Case I
and the pre-fractal cases it is apparent that there is a change in
order of the distribution of the spatial modes; suggesting the
pre-fractal geometries are causing a redistribution of the turbu-
lent kinetic energy of the large scale turbulent structures within
the wake. To investigate this further the variance of the top two
modes, as determined in λ, is presented in Fig. 6 as a percent-
age of the mean flow. From this figure it is evident that even



Figure 5: Top two leading spatial modes, P1 and P2, computed
from a POD. Only the streamwise component of the decompo-
sition is presented.

though spatially the top two POD modes resemble one another
in the pre-fractal cases they contain a far greater contribution of
the total variance i.e. turbulent kinetic energy. This is especially
evident between X∗ = 4–6, i.e. the location of the peak turbulent
intensity.
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Figure 6: The percentage of the variance of the flow λ calculated
for each POD calculation, with respect to the mean.

To investigate the dynamical behaviour of these large scale
structures a power density spectrum of the temporal coefficients
of the top two modes of C is calculated using Welch’s imple-
mentation Welch (1967) of the fast Fourier transform. The fre-
quency is expressed as a function of the Strouhal number de-
fined as St = f/LU0, where f is the frequency and L is the di-
mension of the second iteration square cylinder. At first glance
it is apparent that spatial structures are complex and contain
many different turbulent length scales. On closer inspection it
is evident within these complex distributions there are a num-
ber of dominant frequencies. As shown in Fig. 6 in the first
and second plane of Case I, in the leading mode (black line)
a peak frequency at St=1.3 occurs. This frequency is likely to

be associated to turbulent interactions produced from the flow
structures shed from the cylinders. In the second mode (red
line) further downstream in the fourth plane a second frequency
is observed, at St=0.58. This position relates to X∗=6–7 which
from the spatial modes relates to the formation of a large scale
coherent structure. In all of the pre-fractal cases, at differing
locations, in the top two leading modes two frequencies are ob-
served; St=0.25 and again St=0.58. These two frequencies are
especially prominent in case III. It is therefore hypothesised that
these frequencies relate to the shedding of turbulent structures
from different iterations of obstacles, and each fractal iteration
has its own specific signature within the wake. Whilst there are
modal decomposition techniques which allow the extraction of
such structures this is beyond the scope of this conference paper
and will be the subject of further work.
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Figure 7: Fourier Spectra taken of the temporal coefficients re-
lating to top two POD modes, plotted against Strouhal number
- black and red lines relate to C1 and C2 respectively.

Conclusions

From these preliminary investigations, it is determined that the
turbulent wake created by a pre-fractal multiscale obstacle is
significantly different to that created by an obstacle with only
a single length scale, and the same porosity. It is found that
pre-fractals obstacles create a protracted region of turbulence
intensity, the growth and decay rate of which can be chnaged by
arranging the fractal in a different manner. From a POD anal-
ysis it is determined that similar large scale turbulent structures
are produced in the wake of all of all the obstacles, however
those in the wake of the pre-fractals have a different energy dis-
tribution. Further investigations in to the POD spectra provide
evidence that each of the pre-fractals iterations creates its own
signature within the turbulent wake. Concluding further work
is require to investigate how these signatures propagate within
the wake, what is their effect on the growth and decay of turbu-
lence intensity and how changing a fractals arrangement alters
the iterations signature.
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